The Event System

The event system is at the heart of BattleArena, and is how game logic and most features will be
configured. Most classes you will extend (i.e. Arena, Competition, Map, etc.) do not have (m)any
overridable methods, but instead use events.

The BattleArena event system is an extension of Bukkit's event system, which should be familiar to
most people reading this documentation. However, it comes with a set of additional features that
let you scope events for specific arenas.

Arena Events

When specifying an event for BattleArena, rather than using Bukkit's @EventHandler annotation,
BattleArena's @ArenaEventHandler annotation is available, letting you listen for events that only
happen in your arena:

public class MyArena extends Arena {

@ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")

private Duration infectionTime = Duration.ofSeconds(5);

@ArenaEventHandler
public void onInteract(PlayerinteractEvent event) {

event.getPlayer().sendMessage("Interact while in Arena!");

In this example, the PlayerinteractEvent is listened for, but what makes this different from using
@EventHandler is this event will only be called for players inside a MyArena. This also means
players in say a Battlegrounds arena would never see this message. If a random player playing
survival were to click a block, nothing would happen, but if a player had ran /myarena join and
started clicking blocks, you would see messages in console.

Custom Parameters

In addition to simply scoping out events per-Arena, BattleArena also lets you specify additional
values in your event method that would otherwise not work in Bukkit. These two options are a
Competition and an ArenaPlayer. For events that are per-player (i.e. PlayerinteractEvent), you



can specify both, however some events may not be per-player, but may only be called for an Arena
(i.e. ArenaPhaseStartEvent). Here are two examples:

Player Event

@ArenaEventHandler

public void onInteract(PlayerinteractEvent event, ArenaPlayer player) {
event.getPlayer().sendMessage(player.getPlayer().getName() + " interacted in arena: " +

player.getArena().getName());

}

Arena Event

@ArenaEventHandler

public void onPhaseStart(ArenaPhaseStartEvent event, Competition<?> competition) {
System.out.printin("The phase " + event.getPhase().getType().getName() + " was started in competition " +

competition.getMap().getName());

}

The second parameter is dynamic, meaning you can also specify the competition for your arena. So
if you had a SpleefCompetition for instance, you could replace the Competition<?> reference
with that.

Registering Listeners

By default, placing custom event listeners inside an Arena class will automatically register them
for you without any additional code needed. However, if you wish to segregate this logic and
instead have it in a separate class, a few things will need to be done.

Creating an ArenalListener

Rather than implementing Bukkit's listener, you will need to implement ArenaListener. Here is an
example:

public class MyArenaListener implements ArenalListener {
@ArenaEventHandler

public void onInteract(PlayerinteractEvent event) {

event.getPlayer().sendMessage("Interact while in Arena!");



Registering Your Listener

In order to register your listener, you need to register it against the Arena in which you want to
capture events for. In the example of MyArena, it is best done in the constructor like so:

public class MyArena extends Arena {

@ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")

private Duration infectionTime = Duration.ofSeconds(5);

public MyArena() {

super();

this.getEventManager().registerEvents(new MyArenalistener());

It is also important to note that if you are using standard @EventHandler annotations in your
MyArenalistener, they will not be registered using the above code. You will need to run the
standard Bukkit#getPluginManager#registerEvents method to do this. However, it is not
recommended to mix these two together, and standard Bukkit events should be done in a
separate listener, registered in the main class of your plugin.

Limitations

It is worth noting that not all events can be scoped by the @ArenaEventHandler annotation. This is
mainly because the event system needs to have a pathway to extract an Arena player from an
event. For instance, all events that are an instance of a PlayerEvent will be usable in BattleArena,
since BattleArena can pull an ArenaPlayer from a standard Bukkit player. However, an event such
as the WeatherChangeEvent cannot be referenced back to an Arena, because it is a global event
not tied to a player. If you attempted to use the @ArenaEventHandler, nothing would happen.

Revision #3
Created 5 December 2024 18:02:19 by Redned
Updated 5 December 2024 18:33:31 by Redned



