
Now that you have an Arena class with functioning game logic, it's time to expand on that.

As mentioned in the Adding Game Logic page, you will need to create a custom Competition class.
The following code below is how to create a custom Competition:

As seen above, you will need to extend the LiveCompetition class, which is created for
competitions that are live on the server BattleArena is running on. On it's own, this will do nothing,
so the next step is to create a custom ArenaMap which is responsible for creating the competition.

Per-Competition Code

Creating Competition Classes

public class MyCompetition extends LiveCompetition<MyCompetition> {

 public MyCompetition(MyArena arena, CompetitionType type, ArenaMap map) {
 super(arena, type, map);
 }

}

public class MyCompetitionMap extends LiveCompetitionMap {
 public static final MapFactory FACTORY = MapyFactory.create(MyCompetitionMap.class,
MyCompetitionMap::new);

 public MyCompetitionMap() {
 }

 public MyCompetitionMap(String name, Arena arena, MapType type, String world, @Nullable Bounds bounds,
@Nullable Spawns spawns) {
 super(name, arena, type, world, bounds, spawns);
 }

 // Override this method in order to use your custom competition class
 @Override
 public LiveCompetition<?> createCompetition(Arena arena) {
 if (!(arena instanceof MyArena myArena)) {

https://docs.battleplugins.org/books/developer-guide/page/adding-game-logic

As mentioned in an earlier segment of this documentation, maps can exist without necessarily
having a competition bound to them, meaning they are responsible for actually creating a live
competition. In the map class above, it can be seen the createCompetition method is overridden
to instead create an instance of our MyCompetition class.

Additionally, a MapFactory is specified at the top of the class - this is important for the next step
of linking this to your MyArena so BattleArena knows which ArenaMap (and therefore,
Competition) to create for your Arena. It is also very important that both constructors are
specified as seen in the example above.

And finally, the last step is to override the getMapFactory method in MyArena, and specify your
factory like so:

Now that we have all the necessary classes created, you can now start creating code that will exist
on a per-competition level. If we wanted to infect a random player every minute for instance the
following could be done like so:

 throw new IllegalArgumentException("Arena must be an instance of MyArena!");
 }

 return new MyCompetition(myArena, arena.getType(), this);
 }
}

public class MyArena extends Arena {
 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 private final Set<UUID> infectedPlayers = new HashSet<>();

 @Override
 public MapFactory getMapFactory() {
 return MyCompetitionMap.FACTORY;
 }

 ...
 }

Per-Competition Code

And with those changes, we also need to update MyArena to actually call the start and stop
methods. Here is what the updated MyArena class would look like:

public class MyCompetition extends LiveCompetition<MyCompetition> {

 private BukkitTask tickTask;

 public MyCompetition(MyArena arena, CompetitionType type, LiveCompetitionMap map) {
 super(arena, type, map);
 }

 public void startInfectTask() {
 this.tickTask = Bukkit.getScheduler().runTaskTimer(this.getArena().getPlugin(), this::infectPlayer, 0, 60 * 60
* 20);
 }

 public void stopInfectTask() {
 if (this.tickTask != null) {
 this.tickTask.cancel();
 }

 this.tickTask = null;
 }

 private void infectPlayer() {
 MyArena arena = (MyArena) this.getArena();

 // Infect a random player
 List<ArenaPlayer> uninfectedPlayers = this.getPlayers().stream().filter(player ->
!arena.isInfected(player)).toList();
 if (uninfectedPlayers.isEmpty()) {
 return;
 }

 ArenaPlayer player = uninfectedPlayers.get((int) (Math.random() * uninfectedPlayers.size()));
 arena.infect(player.getPlayer());
 }
}

public class MyArena extends Arena {
 private static final String INFECTED_METADATA = "infected";

 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 @Override
 public MapFactory getMapFactory() {
 return MyCompetitionMap.FACTORY;
 }

 @ArenaEventHandler
 public void onDamageEntity(EntityDamageByEntityEvent event) {
 if (event.getDamager() instanceof Player damager && event.getEntity() instanceof Player player) {
 // Player is not infected, let's infect them :)
 if (!player.hasMetadata(INFECTED_METADATA)) {
 this.infect(player);

 damager.sendMessage("You have infected " + player.getName() + "!");
 }
 }
 }

 @ArenaEventHandler
 public void onMove(PlayerMoveEvent event) {
 if (event.getPlayer().hasMetadata(INFECTED_METADATA)) {
 event.getPlayer().sendMessage("You are infected! You cannot move!");
 event.setCancelled(true);
 }
 }

 @ArenaEventHandler
 public void onPhaseStart(ArenaPhaseStartEvent event, MyCompetition competition) {
 // Ensure we are ingame
 if (!CompetitionPhaseType.INGAME.equals(event.getPhase().getType())) {
 return;
 }

 competition.startInfectTask();
 }

As seen above, when the game enters the in-game phase, we start running our task in the active
MyCompetition to infect a random player every minute. Once the competition is no longer
ingame, we stop the task.

 @ArenaEventHandler
 public void onPhaseComplete(ArenaPhaseCompleteEvent event, MyCompetition competition) {
 // Ensure we are ingame
 if (!CompetitionPhaseType.INGAME.equals(event.getPhase().getType())) {
 return;
 }

 competition.stopInfectTask();
 }

 public boolean isInfected(ArenaPlayer player) {
 return player.getPlayer().hasMetadata(INFECTED_METADATA);
 }

 public void infect(Player player) {
 player.sendMessage("You have been infected!");
 player.setMetadata(INFECTED_METADATA, new FixedMetadataValue(MyPlugin.getInstance(), true));

 // Infect the player for the given duration
 Bukkit.getScheduler().runTaskLater(MyPlugin.getInstance(), () -> {
 player.removeMetadata(INFECTED_METADATA, MyPlugin.getInstance());
 player.sendMessage("You are no longer infected!");
 }, this.infectionTime.toMillis() / 50);
 }
}

Revision #4
Created 14 December 2024 14:04:29 by Redned
Updated 14 December 2024 14:53:46 by Redned

