
BattleArena provides support for creating custom command executors for individual arenas. Each
arena has its own executor that is utilized when running the /<arena> command (i.e. /arena,
/battlegrounds, etc.). Continuing from this tutorial, there is also a /myarena executor used, and we
will be expanding upon this in order to add a custom command that lets users specify infection
points.

The first step in creating custom commands is actually extending the executor. This can simply be
done by extending the ArenaCommandExecutor class like so:

Now that the class is created, inside your MyArena you will want to override the
createCommandExecutor and provide your own like so:

Creating a Custom
Command Executor

Creating the Executor

public class MyCommandExecutor extends ArenaCommandExecutor {

 public MyCommandExecutor(MyArena arena) {
 super(arena);
 }
}

public class MyArena extends Arena {
 ...

 @Override
 public ArenaCommandExecutor createCommandExecutor() {
 return new MyCommandExecutor(this);
 }

 ...
}

Adding commands using BattleArena's command system is designed to be dead simple. The
system is annotation-based, and supports a number of built-in parameter types. An example
command (without any logic yet) for adding infection points is shown below:

To break it down further:

This is an annotation added over a method to designate the method as a command method. This
contains the command name, sub commands, the command description and the permission node.
This means when running /myarena point add, the method shown above will be used.
Additionally, the permission designated to this command will be
battlearena.command.myarena.point.add.

BattleArena dynamically reads which argument to use from the method parameters. The
parameter, Player, is not specified when running the command, but is the player who invoked the
command. Everything from that point forward is built into the command, meaning that a user
would need to run /myarena point add <map> <min pos> <max pos> to successfully invoke
the command.

You might be thinking, how does BattleArena know to read a position from a string, or a map from
a string. The simplest answer to that is BattleArena has custom logic for a various number of
classes. As this command system is designed to be dynamic, it will handle most of the busy work
for you, so instead of having to read a value from a string, or parse a number, BattleArena does
that automatically and so the command example above needs no additional work from you.

Adding Commands

@ArenaCommand(commands = "point", subCommands = "add", description = "Adds an infection point to a
MyArena competition.", permissionNode = "point.add")
public void addPoint(Player player, CompetitionMap map, Position min, Position max) {
 if (!(map instanceof MyCompetitionMap myMap)) {
 return; // Should not happen but just incase
 }

 ...
 }

@ArenaCommand

Method Parameters

Parsing the Parameters

https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/java/org/battleplugins/arena/command/ArenaCommand.java

Now that the command method exists, it's time to add some logic to it. Fortunately, this is very
easily done:

As we already created a method in the previous page for adding an infection point, it simply just
needs to be invoked here. Additionally a save method is then called to save the value we just
added to the config. Since we now have a method to add an infection point, we may also want to
add a method to remove it. This can simply be done by adding the following:

Adding the Logic

public class MyCommandExecutor extends ArenaCommandExecutor {

 public MyCommandExecutor(MyArena arena) {
 super(arena);
 }

 @ArenaCommand(commands = "point", subCommands = "add", description = "Adds an infection point to a
MyArena competition.", permissionNode = "point.add")
 public void addPoint(Player player, CompetitionMap map, Position min, Position max) {
 if (!(map instanceof MyCompetitionMap myMap)) {
 return; // Should not happen but just incase
 }

 myMap.addInfectionPoint(new Bounds(min, max));

 try {
 myMap.save();
 } catch (ParseException | IOException e) {
 BattleArena.getInstance().error("Failed to save map file for arena {}", this.arena.getName(), e);
 Messages.MAP_FAILED_TO_SAVE.send(player, map.getName());
 return;
 }
 }
}

@ArenaCommand(commands = "point", subCommands = "remove", description = "Removes an infection point
from a MyArena competition.", permissionNode = "point.remove")
public void removePoint(Player player, CompetitionMap map, Position min, Position max) {
 if (!(map instanceof MyCompetitionMap myMap)) {
 return; // Should not happen but just incase

Now that we have infection points that players can add in-game using a command, it's time to
make those infection points useful. Inside our MyCompetition class, let's add a task that uses
these infection points:

 }

 myMap.removeInfectionPoint(new Bounds(min, max));

 try {
 myMap.save();
 } catch (ParseException | IOException e) {
 BattleArena.getInstance().error("Failed to save map file for arena {}", this.arena.getName(), e);
 Messages.MAP_FAILED_TO_SAVE.send(player, map.getName());
 return;
 }
}

Tying it all Together

public class MyCompetition extends LiveCompetition<MyCompetition> {

 private BukkitTask tickTask;
 private BukkitTask infectTask;

 public MyCompetition(MyArena arena, CompetitionType type, LiveCompetitionMap map) {
 super(arena, type, map);
 }

 public void startInfectTask() {
 this.tickTask = Bukkit.getScheduler().runTaskTimer(this.getArena().getPlugin(), this::infectPlayer, 0, 60 * 60
* 20);
 this.infectTask = Bukkit.getScheduler().runTaskTimer(this.getArena().getPlugin(), this::checkInfectionPoints,
0, 20);
 }

 public void stopInfectTask() {
 if (this.tickTask != null) {
 this.tickTask.cancel();
 }

 if (this.infectTask != null) {
 this.infectTask.cancel();
 }

 this.tickTask = null;
 this.infectTask = null;
 }

 private void checkInfectionPoints() {
 MyArena arena = (MyArena) this.getArena();
 MyCompetitionMap map = (MyCompetitionMap) this.getMap();

 for (ArenaPlayer player : this.getPlayers()) {
 if (arena.isInfected(player)) {
 continue;
 }

 for (Bounds bounds : map.getInfectionPoints()) {
 if (bounds.isInside(player.getPlayer().getLocation())) {
 arena.infect(player.getPlayer());
 break;
 }
 }
 }
 }

 ...
}

Revision #2
Created 14 December 2024 15:03:46 by Redned
Updated 14 December 2024 15:27:53 by Redned

