
An overview on how to create a custom arena gamemode.

Overview
Creating Your Arena Class
Adding Configurable Values to Your Arena
The Event System
Adding Game Logic
Per-Competition Code
Storing Map Information
Creating a Custom Command Executor

Creating a Custom
Arena Gamemode

This is an overview of how to use the BattleArena API to create a custom gamemode. Before we
start writing code, there's a few things to keep in mind regarding how BattleArena works and
manages arenas:

The Arena class contains the root logic of a game. This is where global options regarding a specific
arena are configured, such as game events, the number of lives a player should have, and anything
not linked to a specific competition. Each individual gamemode (i.e. Battlegrounds, SkyWars, etc.)
will only have a single Arena instance.

Additionally, an Arena is directly tied to it's respective <arena>.yml file, so most any value
accessible in code is directly taken from the YML.

A Competition represents an active Arena. Where Arena contains all the actual game logic, a
Competition will be responsible for handling anything pertinent to an active game. For instance, all
the logic handling which phase a competition is in will be managed here.

A CompetitionMap is the map in which the Competition is active in. In many cases, this is
something that will not need to be extended, however for certain gamemodes where it is desired to
store additional information (i.e. the layers in a spleef game), it may be useful to use this class.

No game logic is handled in the map class. It simply stores all the information necessary for a
Competition to run (i.e. spawnpoints, the game border, the type of map, etc.

Overview

Arena:

Competition:

CompetitionMap:

https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/resources/arenas/arena.yml
https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/java/org/battleplugins/arena/Arena.java
https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/java/org/battleplugins/arena/competition/Competition.java
https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/java/org/battleplugins/arena/competition/map/CompetitionMap.java

The first step in creating a custom gamemode is creating the Arena class for your game. To do this,
simply create a new class and extend the Arena class.

And to register it, simply run the following in your onEnable method inside your plugin:

Now that the Arena is registered, you can now reference it from your <arena>.yml. For the sake
of this tutorial, we will be copying the standard arena.yml and using it as a base going forward.

Inside of plugins/BattleArena/arenas, simply copy the arena.yml and call it myarena.yml.
Change the name to Arena and add a new field: mode: MyArena (see the full myarena.yml at the
bottom of this page).

On its own, this will not do much as no game logic has been designed yet. However, this will serve
as a foundation for the rest of the tutorial.

Creating Your Arena Class
Creating a Custom Arena Class

package org.battleplugins.arena.example;

import org.battleplugins.arena.Arena;

public class MyArena extends Arena {

}

BattleArenaApi.get().registerArena(this, "MyArena", MyArena.class, MyArena::new);

Using your Custom Arena

Full myarena.yml
name: MyArena
mode: MyArena
type: Match

team-options:
 named-teams: false
 team-size: 1
 team-amount: 2
 team-selection: none
modules:
 - arena-restoration
 - classes
 - duels
 - scoreboards
lives:
 enabled: false
victory-conditions:
 teams-alive:
 amount: 1
 time-limit:
 time-limit: 5m
events:
 on-join:
 - store{types=all}
 - change-gamemode{gamemode=adventure}
 - flight{enabled=false}
 - teleport{location=waitroom}
 on-spectate:
 - store{types=all}
 - change-gamemode{gamemode=spectator}
 - flight{enabled=true}
 - teleport{location=spectator}
 on-leave:
 - clear-effects
 - restore{types=all}
 - remove-scoreboard
 on-death:
 - clear-inventory
 - respawn
 - delay{ticks=1}
 - teleport{location=waitroom}
options:
 - block-break{enabled=false}
 - block-place{enabled=false}

 - block-interact{enabled=false}
 - damage-entities{option=never}
 - keep-inventory{enabled=true}
 - keep-experience{enabled=true}
 - class-equip-only-selects{enabled=true}
initial-phase: waiting
phases:
 waiting:
 allow-join: true
 next-phase: countdown
 options:
 - damage-players{option=never}
 - class-equipping{enabled=true}
 events:
 on-start:
 - apply-scoreboard{scoreboard=waiting}
 on-join:
 - apply-scoreboard{scoreboard=waiting}
 countdown:
 allow-join: false
 allow-spectate: true
 revert-phase: true
 next-phase: ingame
 countdown-time: 5s
 options:
 - damage-players{option=never}
 - class-equipping{enabled=true}
 events:
 on-start:
 - apply-scoreboard{scoreboard=countdown}
 ingame:
 allow-join: false
 allow-spectate: true
 next-phase: victory
 options:
 - damage-players{option=other_team}
 events:
 on-start:
 - equip-class{class=warrior}
 - teleport{location=team_spawn}

 - give-effects{effects=[speed{duration=300;amplifier=1}]}
 - play-sound{sound=block.note_block.pling;pitch=2;volume=1}
 - apply-scoreboard{scoreboard=ingame-list}
 victory:
 allow-join: false
 allow-spectate: false
 next-phase: waiting
 duration: 5s
 events:
 on-complete:
 - leave
 - restore-arena
 - remove-scoreboard
 on-victory:
 - send-message{message=<green>Congrats, you won!</green>}
 - play-sound{sound=entity.player.levelup;pitch=1;volume=1}
 on-lose:
 - send-message{message=<red>Sorry, you lost!</red>}
 - play-sound{sound=block.anvil.place;pitch=0;volume=1}
 on-draw:
 - send-message{message=<yellow>It's a draw!</yellow>}
 - play-sound{sound=block.beacon.deactivate;pitch=0;volume=1}

Now that you have a custom Arena instance and a corresponding YML file, you are now ready to
add some configurable options to your game!

One of the main features BattleArena includes a fully custom configuration system. This allows for
very easy loading of data from config files. The Arena instance and YML file go hand-in-hand, so
adding configurable options is very simple.

This is an annotation that lets you load a value from the config. It has the following options

name: The name of the option
description: The description of the option
required: Whether the option is required to be specified
contextProvider: A provider to allow for more complex loading of an option (this option
is covered in a more advanced page)

In this example, an infection time option has been added which can now be pulled from the
myarena.yml:

Adding Configurable Values
to Your Arena

The Configuration System - in a nutshell

@ArenaOption annotation

MyArena example
public class MyArena extends Arena {

 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);
}

name: MyArena
mode: MyArena
type: Match
infection-time: 3s

In this example, if no infection time if specified, then the default value of 5 seconds will be used as
set in the code. However, if a config value with the same name from the ArenaOption is set, it will
override the default value. In the case that a value should be required in order to load the arena,
the required option can be set in the ArenaOption annotation.

On its own, this game will still do nothing. While we have an infection time option set that if
referenced, will pull from the corresponding arena YML, we don't have any game logic. Before we
dive into that, the next page in this tutorial will discuss the event system which is the heart of
BattleArena and how you will deal with the vast majority of your game logic.

 ...

The event system is at the heart of BattleArena, and is how game logic and most features will be
configured. Most classes you will extend (i.e. Arena, Competition, Map, etc.) do not have (m)any
overridable methods, but instead use events.

The BattleArena event system is an extension of Bukkit's event system, which should be familiar to
most people reading this documentation. However, it comes with a set of additional features that
let you scope events for specific arenas.

When specifying an event for BattleArena, rather than using Bukkit's @EventHandler annotation,
BattleArena's @ArenaEventHandler annotation is available, letting you listen for events that only
happen in your arena:

In this example, the PlayerInteractEvent is listened for, but what makes this different from using
@EventHandler is this event will only be called for players inside a MyArena. This also means
players in say a Battlegrounds arena would never see this message. If a random player playing
survival were to click a block, nothing would happen, but if a player had ran /myarena join and
started clicking blocks, you would see messages in console.

In addition to simply scoping out events per-Arena, BattleArena also lets you specify additional
values in your event method that would otherwise not work in Bukkit. These two options are a
Competition and an ArenaPlayer. For events that are per-player (i.e. PlayerInteractEvent), you

The Event System

Arena Events

public class MyArena extends Arena {

 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 @ArenaEventHandler
 public void onInteract(PlayerInteractEvent event) {
 event.getPlayer().sendMessage("Interact while in Arena!");
 }
}

Custom Parameters

can specify both, however some events may not be per-player, but may only be called for an Arena
(i.e. ArenaPhaseStartEvent). Here are two examples:

The second parameter is dynamic, meaning you can also specify the competition for your arena. So
if you had a SpleefCompetition for instance, you could replace the Competition<?> reference
with that.

By default, placing custom event listeners inside an Arena class will automatically register them
for you without any additional code needed. However, if you wish to segregate this logic and
instead have it in a separate class, a few things will need to be done.

Rather than implementing Bukkit's listener, you will need to implement ArenaListener. Here is an
example:

Player Event
@ArenaEventHandler
public void onInteract(PlayerInteractEvent event, ArenaPlayer player) {
 event.getPlayer().sendMessage(player.getPlayer().getName() + " interacted in arena: " +
player.getArena().getName());
}

Arena Event
@ArenaEventHandler
public void onPhaseStart(ArenaPhaseStartEvent event, Competition<?> competition) {
 System.out.println("The phase " + event.getPhase().getType().getName() + " was started in competition " +
competition.getMap().getName());
}

Registering Listeners

Creating an ArenaListener

public class MyArenaListener implements ArenaListener {

 @ArenaEventHandler
 public void onInteract(PlayerInteractEvent event) {
 event.getPlayer().sendMessage("Interact while in Arena!");
 }
}

In order to register your listener, you need to register it against the Arena in which you want to
capture events for. In the example of MyArena, it is best done in the constructor like so:

It is also important to note that if you are using standard @EventHandler annotations in your
MyArenaListener, they will not be registered using the above code. You will need to run the
standard Bukkit#getPluginManager#registerEvents method to do this. However, it is not
recommended to mix these two together, and standard Bukkit events should be done in a
separate listener, registered in the main class of your plugin.

It is worth noting that not all events can be scoped by the @ArenaEventHandler annotation. This is
mainly because the event system needs to have a pathway to extract an Arena player from an
event. For instance, all events that are an instance of a PlayerEvent will be usable in BattleArena,
since BattleArena can pull an ArenaPlayer from a standard Bukkit player. However, an event such
as the WeatherChangeEvent cannot be referenced back to an Arena, because it is a global event
not tied to a player. If you attempted to use the @ArenaEventHandler, nothing would happen.

Registering Your Listener

public class MyArena extends Arena {

 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 public MyArena() {
 super();

 this.getEventManager().registerEvents(new MyArenaListener());
 }
}

Limitations

Now that you have a basic understanding of how the event system works, along with a base to
work off of. It's time to implement some game logic!

Game logic can be implemented in two places: the Arena, or your Competition class. While we do
not have a Competition class yet, it is typically recommended to leave most code inside of your
Arena class, with a custom Competition class being responsible for storing values that change
throughout the game (i.e. the number of blocks broken). We will get to this later.

Going from our previous example of a grace period, let's add some listeners to make this
functional!

Adding Game Logic

Using Events

public class MyArena extends Arena {
 private static final String INFECTED_METADATA = "infected";

 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 @ArenaEventHandler
 public void onDamageEntity(EntityDamageByEntityEvent event) {
 if (event.getDamager() instanceof Player damager && event.getEntity() instanceof Player player) {
 // Player is not infected, let's infect them :)
 if (!player.hasMetadata(INFECTED_METADATA)) {
 player.setMetadata(INFECTED_METADATA, new FixedMetadataValue(MyPlugin.getInstance(), true));
 player.sendMessage("You have been infected!");
 damager.sendMessage("You have infected " + player.getName() + "!");

 // Infect the player for the given duration
 Bukkit.getScheduler().runTaskLater(MyPlugin.getInstance(), () -> {
 player.removeMetadata(INFECTED_METADATA, MyPlugin.getInstance());
 player.sendMessage("You are no longer infected!");
 }, this.infectionTime.toMillis() / 50);
 }
 }

In this example, if a player is hit by another player while in a MyArena, they will be "infected" for a
short period of time. The duration for which they are infected is pulled from the infectionTime
variable specified in your arena YML. While this is a very simple example, it demonstrates how to
use the event system in BattleArena.

As a reminder, no game specific variables should be stored in this Arena class. As an example,
this would be wrong:

 }

 @ArenaEventHandler
 public void onMove(PlayerMoveEvent event) {
 if (event.getPlayer().hasMetadata(INFECTED_METADATA)) {
 event.getPlayer().sendMessage("You are infected! You cannot move!");
 event.setCancelled(true);
 }
 }
}

 // Do NOT do this - MyArena only exists ONCE, and this map will leak
 // across ALL competitions of type MyArena
 private final Set<UUID> infectedPlayers = new HashSet<>();

 @ArenaEventHandler
 public void onDamageEntity(EntityDamageByEntityEvent event) {
 if (event.getDamager() instanceof Player damager && event.getEntity() instanceof Player player) {
 // Player is not infected, let's infect them :)
 if (!this.infectedPlayers.contains(player.getUniqueId())) {
 this.infectedPlayers.add(player.getUniqueId());
 player.sendMessage("You have been infected!");
 damager.sendMessage("You have infected " + player.getName() + "!");

 // Infect the player for the given duration
 Bukkit.getScheduler().runTaskLater(MyPlugin.getInstance(), () -> {
 this.infectedPlayers.remove(player.getUniqueId());
 player.sendMessage("You are no longer infected!");
 }, this.infectionTime.toMillis() / 50);
 }
 }
 }

Up next is creating a custom map and competition class, which will further extend the functionality
above and demonstrate how to store per-game logic the correct way for each game individually.

 @ArenaEventHandler
 public void onMove(PlayerMoveEvent event) {
 if (this.infectedPlayers.contains(event.getPlayer().getUniqueId())) {
 event.getPlayer().sendMessage("You are infected! You cannot move!");
 event.setCancelled(true);
 }
 }

Now that you have an Arena class with functioning game logic, it's time to expand on that.

As mentioned in the Adding Game Logic page, you will need to create a custom Competition class.
The following code below is how to create a custom Competition:

As seen above, you will need to extend the LiveCompetition class, which is created for
competitions that are live on the server BattleArena is running on. On it's own, this will do nothing,
so the next step is to create a custom ArenaMap which is responsible for creating the competition.

Per-Competition Code

Creating Competition Classes

public class MyCompetition extends LiveCompetition<MyCompetition> {

 public MyCompetition(MyArena arena, CompetitionType type, ArenaMap map) {
 super(arena, type, map);
 }

}

public class MyCompetitionMap extends LiveCompetitionMap {
 public static final MapFactory FACTORY = MapyFactory.create(MyCompetitionMap.class,
MyCompetitionMap::new);

 public MyCompetitionMap() {
 }

 public MyCompetitionMap(String name, Arena arena, MapType type, String world, @Nullable Bounds bounds,
@Nullable Spawns spawns) {
 super(name, arena, type, world, bounds, spawns);
 }

 // Override this method in order to use your custom competition class
 @Override
 public LiveCompetition<?> createCompetition(Arena arena) {
 if (!(arena instanceof MyArena myArena)) {

https://docs.battleplugins.org/books/developer-guide/page/adding-game-logic

As mentioned in an earlier segment of this documentation, maps can exist without necessarily
having a competition bound to them, meaning they are responsible for actually creating a live
competition. In the map class above, it can be seen the createCompetition method is overridden
to instead create an instance of our MyCompetition class.

Additionally, a MapFactory is specified at the top of the class - this is important for the next step
of linking this to your MyArena so BattleArena knows which ArenaMap (and therefore,
Competition) to create for your Arena. It is also very important that both constructors are
specified as seen in the example above.

And finally, the last step is to override the getMapFactory method in MyArena, and specify your
factory like so:

Now that we have all the necessary classes created, you can now start creating code that will exist
on a per-competition level. If we wanted to infect a random player every minute for instance the
following could be done like so:

 throw new IllegalArgumentException("Arena must be an instance of MyArena!");
 }

 return new MyCompetition(myArena, arena.getType(), this);
 }
}

public class MyArena extends Arena {
 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 private final Set<UUID> infectedPlayers = new HashSet<>();

 @Override
 public MapFactory getMapFactory() {
 return MyCompetitionMap.FACTORY;
 }

 ...
 }

Per-Competition Code

And with those changes, we also need to update MyArena to actually call the start and stop
methods. Here is what the updated MyArena class would look like:

public class MyCompetition extends LiveCompetition<MyCompetition> {

 private BukkitTask tickTask;

 public MyCompetition(MyArena arena, CompetitionType type, LiveCompetitionMap map) {
 super(arena, type, map);
 }

 public void startInfectTask() {
 this.tickTask = Bukkit.getScheduler().runTaskTimer(this.getArena().getPlugin(), this::infectPlayer, 0, 60 * 60
* 20);
 }

 public void stopInfectTask() {
 if (this.tickTask != null) {
 this.tickTask.cancel();
 }

 this.tickTask = null;
 }

 private void infectPlayer() {
 MyArena arena = (MyArena) this.getArena();

 // Infect a random player
 List<ArenaPlayer> uninfectedPlayers = this.getPlayers().stream().filter(player ->
!arena.isInfected(player)).toList();
 if (uninfectedPlayers.isEmpty()) {
 return;
 }

 ArenaPlayer player = uninfectedPlayers.get((int) (Math.random() * uninfectedPlayers.size()));
 arena.infect(player.getPlayer());
 }
}

public class MyArena extends Arena {
 private static final String INFECTED_METADATA = "infected";

 @ArenaOption(name = "infection-time", description = "How long a player should be infected once hit.")
 private Duration infectionTime = Duration.ofSeconds(5);

 @Override
 public MapFactory getMapFactory() {
 return MyCompetitionMap.FACTORY;
 }

 @ArenaEventHandler
 public void onDamageEntity(EntityDamageByEntityEvent event) {
 if (event.getDamager() instanceof Player damager && event.getEntity() instanceof Player player) {
 // Player is not infected, let's infect them :)
 if (!player.hasMetadata(INFECTED_METADATA)) {
 this.infect(player);

 damager.sendMessage("You have infected " + player.getName() + "!");
 }
 }
 }

 @ArenaEventHandler
 public void onMove(PlayerMoveEvent event) {
 if (event.getPlayer().hasMetadata(INFECTED_METADATA)) {
 event.getPlayer().sendMessage("You are infected! You cannot move!");
 event.setCancelled(true);
 }
 }

 @ArenaEventHandler
 public void onPhaseStart(ArenaPhaseStartEvent event, MyCompetition competition) {
 // Ensure we are ingame
 if (!CompetitionPhaseType.INGAME.equals(event.getPhase().getType())) {
 return;
 }

 competition.startInfectTask();
 }

As seen above, when the game enters the in-game phase, we start running our task in the active
MyCompetition to infect a random player every minute. Once the competition is no longer
ingame, we stop the task.

 @ArenaEventHandler
 public void onPhaseComplete(ArenaPhaseCompleteEvent event, MyCompetition competition) {
 // Ensure we are ingame
 if (!CompetitionPhaseType.INGAME.equals(event.getPhase().getType())) {
 return;
 }

 competition.stopInfectTask();
 }

 public boolean isInfected(ArenaPlayer player) {
 return player.getPlayer().hasMetadata(INFECTED_METADATA);
 }

 public void infect(Player player) {
 player.sendMessage("You have been infected!");
 player.setMetadata(INFECTED_METADATA, new FixedMetadataValue(MyPlugin.getInstance(), true));

 // Infect the player for the given duration
 Bukkit.getScheduler().runTaskLater(MyPlugin.getInstance(), () -> {
 player.removeMetadata(INFECTED_METADATA, MyPlugin.getInstance());
 player.sendMessage("You are no longer infected!");
 }, this.infectionTime.toMillis() / 50);
 }
}

In some competitions, it may be necessary to store additional information that varies on a per-map
basis. An example of this is predefined layers in spleef. The game needs to know where the layers
exist in order to handle logic such as only allowing block break for the layers, or allowing the layers
to decay. ArenaSpleef makes use of this functionality, and will be used as a reference point at
various points in this tutorial.

As mentioned earlier in this set of documentation, no game logic should exist in your
CompetitionMap class. Like Arena, it should only contain information and configuration. In the
example of spleef, SpleefMap contains all the stored layers, but the actual logic to decay the
layers, or handle block breaking is handled in the relevant SpleefCompetition or SpleefArena.

In our example, we will store a set of infection points which will infect players when they walk into
them:

Storing Map Information

Storing Information in Your Map

public class MyCompetitionMap extends LiveCompetitionMap {
 public static final MapFactory FACTORY = MapFactory.create(MyCompetitionMap.class,
MyCompetitionMap::new);

 @ArenaOption(name = "infection-points", description = "The points where players can be infected.")
 private List<Bounds> infectionPoints;

 public MyCompetitionMap() {
 }

 public MyCompetitionMap(String name, Arena arena, MapType type, String world, @Nullable Bounds bounds,
@Nullable Spawns spawns) {
 super(name, arena, type, world, bounds, spawns);
 }

 public List<Bounds> getInfectionPoints() {
 return this.infectionPoints == null ? List.of() : List.copyOf(this.infectionPoints);
 }

https://github.com/BattlePlugins/ArenaSpleef/blob/master/src/main/java/org/battleplugins/arena/spleef/arena/SpleefMap.java
https://github.com/BattlePlugins/ArenaSpleef/blob/master/src/main/java/org/battleplugins/arena/spleef/arena/SpleefMap.java
https://github.com/BattlePlugins/ArenaSpleef/blob/master/src/main/java/org/battleplugins/arena/spleef/arena/SpleefCompetition.java
https://github.com/BattlePlugins/ArenaSpleef/blob/master/src/main/java/org/battleplugins/arena/spleef/arena/SpleefArena.java

With the code above, BattleArena is now capable of loading a list of Bounds from the maps YML
file. Bounds is a class provided by BattleArena, which simply let you store a minimum and
maximum position. It will be used in our case, as we will be able to store a list of bounds
throughout various points in the map to infect players.

Now that we have the necessary code in order for this to work, we will want to create a way for a
user to add bounds to the map. For this, we will be creating a custom command executor.

 public void addInfectionPoint(Bounds bounds) {
 this.infectionPoints.add(bounds);
 }

 public void removeInfectionPoint(Bounds bounds) {
 this.infectionPoints.remove(bounds);
 }

 @Override
 public LiveCompetition<?> createCompetition(Arena arena) {
 if (!(arena instanceof MyArena myArena)) {
 throw new IllegalArgumentException("Arena must be an instance of MyArena!");
 }

 return new MyCompetition(myArena, arena.getType(), this);
 }
}

https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/java/org/battleplugins/arena/competition/map/options/Bounds.java

BattleArena provides support for creating custom command executors for individual arenas. Each
arena has its own executor that is utilized when running the /<arena> command (i.e. /arena,
/battlegrounds, etc.). Continuing from this tutorial, there is also a /myarena executor used, and we
will be expanding upon this in order to add a custom command that lets users specify infection
points.

The first step in creating custom commands is actually extending the executor. This can simply be
done by extending the ArenaCommandExecutor class like so:

Now that the class is created, inside your MyArena you will want to override the
createCommandExecutor and provide your own like so:

Creating a Custom
Command Executor

Creating the Executor

public class MyCommandExecutor extends ArenaCommandExecutor {

 public MyCommandExecutor(MyArena arena) {
 super(arena);
 }
}

public class MyArena extends Arena {
 ...

 @Override
 public ArenaCommandExecutor createCommandExecutor() {
 return new MyCommandExecutor(this);
 }

 ...
}

Adding commands using BattleArena's command system is designed to be dead simple. The
system is annotation-based, and supports a number of built-in parameter types. An example
command (without any logic yet) for adding infection points is shown below:

To break it down further:

This is an annotation added over a method to designate the method as a command method. This
contains the command name, sub commands, the command description and the permission node.
This means when running /myarena point add, the method shown above will be used.
Additionally, the permission designated to this command will be
battlearena.command.myarena.point.add.

BattleArena dynamically reads which argument to use from the method parameters. The
parameter, Player, is not specified when running the command, but is the player who invoked the
command. Everything from that point forward is built into the command, meaning that a user
would need to run /myarena point add <map> <min pos> <max pos> to successfully invoke
the command.

You might be thinking, how does BattleArena know to read a position from a string, or a map from
a string. The simplest answer to that is BattleArena has custom logic for a various number of
classes. As this command system is designed to be dynamic, it will handle most of the busy work
for you, so instead of having to read a value from a string, or parse a number, BattleArena does
that automatically and so the command example above needs no additional work from you.

Adding Commands

@ArenaCommand(commands = "point", subCommands = "add", description = "Adds an infection point to a
MyArena competition.", permissionNode = "point.add")
public void addPoint(Player player, CompetitionMap map, Position min, Position max) {
 if (!(map instanceof MyCompetitionMap myMap)) {
 return; // Should not happen but just incase
 }

 ...
 }

@ArenaCommand

Method Parameters

Parsing the Parameters

https://github.com/BattlePlugins/BattleArena/blob/master/plugin/src/main/java/org/battleplugins/arena/command/ArenaCommand.java

Now that the command method exists, it's time to add some logic to it. Fortunately, this is very
easily done:

As we already created a method in the previous page for adding an infection point, it simply just
needs to be invoked here. Additionally a save method is then called to save the value we just
added to the config. Since we now have a method to add an infection point, we may also want to
add a method to remove it. This can simply be done by adding the following:

Adding the Logic

public class MyCommandExecutor extends ArenaCommandExecutor {

 public MyCommandExecutor(MyArena arena) {
 super(arena);
 }

 @ArenaCommand(commands = "point", subCommands = "add", description = "Adds an infection point to a
MyArena competition.", permissionNode = "point.add")
 public void addPoint(Player player, CompetitionMap map, Position min, Position max) {
 if (!(map instanceof MyCompetitionMap myMap)) {
 return; // Should not happen but just incase
 }

 myMap.addInfectionPoint(new Bounds(min, max));

 try {
 myMap.save();
 } catch (ParseException | IOException e) {
 BattleArena.getInstance().error("Failed to save map file for arena {}", this.arena.getName(), e);
 Messages.MAP_FAILED_TO_SAVE.send(player, map.getName());
 return;
 }
 }
}

@ArenaCommand(commands = "point", subCommands = "remove", description = "Removes an infection point
from a MyArena competition.", permissionNode = "point.remove")
public void removePoint(Player player, CompetitionMap map, Position min, Position max) {
 if (!(map instanceof MyCompetitionMap myMap)) {
 return; // Should not happen but just incase

Now that we have infection points that players can add in-game using a command, it's time to
make those infection points useful. Inside our MyCompetition class, let's add a task that uses
these infection points:

 }

 myMap.removeInfectionPoint(new Bounds(min, max));

 try {
 myMap.save();
 } catch (ParseException | IOException e) {
 BattleArena.getInstance().error("Failed to save map file for arena {}", this.arena.getName(), e);
 Messages.MAP_FAILED_TO_SAVE.send(player, map.getName());
 return;
 }
}

Tying it all Together

public class MyCompetition extends LiveCompetition<MyCompetition> {

 private BukkitTask tickTask;
 private BukkitTask infectTask;

 public MyCompetition(MyArena arena, CompetitionType type, LiveCompetitionMap map) {
 super(arena, type, map);
 }

 public void startInfectTask() {
 this.tickTask = Bukkit.getScheduler().runTaskTimer(this.getArena().getPlugin(), this::infectPlayer, 0, 60 * 60
* 20);
 this.infectTask = Bukkit.getScheduler().runTaskTimer(this.getArena().getPlugin(), this::checkInfectionPoints,
0, 20);
 }

 public void stopInfectTask() {
 if (this.tickTask != null) {
 this.tickTask.cancel();
 }

 if (this.infectTask != null) {
 this.infectTask.cancel();
 }

 this.tickTask = null;
 this.infectTask = null;
 }

 private void checkInfectionPoints() {
 MyArena arena = (MyArena) this.getArena();
 MyCompetitionMap map = (MyCompetitionMap) this.getMap();

 for (ArenaPlayer player : this.getPlayers()) {
 if (arena.isInfected(player)) {
 continue;
 }

 for (Bounds bounds : map.getInfectionPoints()) {
 if (bounds.isInside(player.getPlayer().getLocation())) {
 arena.infect(player.getPlayer());
 break;
 }
 }
 }
 }

 ...
}

